On Applications of the Generalized Fourier Transform in Numerical Linear Algebra
نویسنده
چکیده
Matrices equivariant under a group of permutation matrices are considered. Such matrices typically arise in numerical applications where the computational domain exhibits geometrical symmetries. In these cases, group representation theory provides a powerful tool for block diagonalizing the matrix via the Generalized Fourier Transform. This technique yields substantial computational savings in problems such as solving linear systems, computing eigenvalues and computing analytic matrix functions. The theory for applying the Generalized Fourier Transform is explained, building upon the familiar special (finite commutative) case of circulant matrices being diagonalized with the Discrete Fourier Transform. The classical convolution theorem and diagonalization results are generalized to the non-commutative case of block diagonalizing equivariant matrices. Our presentation stresses the connection between multiplication with an equivariant matrices and the application of a convolution. This approach highlights the role of the underlying mathematical structures such as the group algebra, and it also simplifies the application of fast Generalized Fourier Transforms. The theory is illustrated with a selection of numerical examples.
منابع مشابه
A general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملGeneral Linear Chirplet Transform and Radar Target Classification
In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...
متن کاملBoundary Value Problems in Generalized Thermodiffusive Elastic Medium
In the present study, the boundary value problems in generalized thermodiffusive elastic medium has been investigated as a result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. As an application of t...
متن کاملA generalized cost Malmquist index to compare the productivities of units with negative data in DEA
In some data envelopment analysis (DEA) applications, some inputs of DMUs have negative values with positive cost. This paper generalizes the global cost Malmquist productivity index to compare the productivity of dierent DMUs with negative inputs in any two periods of times under variable returns to scale (VRS) technology, and then the generalized index is decomposed to several components. The...
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کامل